Write your name on the cover of the test booklet and nowhere else. Failure to follow these directions will cost you 1 point. The test has 100 points (to be scaled up to 140 points) and is scheduled to take 50 minutes. Therefore, expect to spend 1 minute for every 2 points. For example, a 16-point question should take 8 minutes. I cannot allow extra time because of the class that follows our class.

Show all work and write each answer on a separate side of a sheet of paper.

4.1) (10 points) Find the vertical and horizontal asymptote(s) of $F(X)=\frac{X^{2}-7 X+12}{X^{2}-8 X+16}$ if they exist. What is the domain of $\mathrm{F}(\mathrm{X})$? Do not worry about plotting the line.
4.2) (18 points) Find the vertical, horizontal, and slant asymptote(s) of $F(X)=\frac{X^{2}+6 X+5}{X+2}$ if they exist. Find the X and Y intercept(s) if they exist. Plot the function.
4.3) (18 points) Answer EITHER Part A OR Part B.
A) The equation $\frac{X^{2}}{4}+\frac{Y^{2}}{9}=1$ represents what type of conic section? Find the vertices and foci and plot it.
B) The equation $\frac{X^{2}}{4}-\frac{Y^{2}}{9}=1$ represents what type of conic section? Find the vertices and foci and plot it.
4.4) (4 points) If Question 4.3A was changed to $\frac{(X+3)^{2}}{4}+\frac{(Y+2)^{2}}{9}=1$, then how would the graph move? Explain your logic without actually drawing it.
5.1) (8 points) Draw $F(X)=e^{x}$ over the domain $X \in[-3,3]$. Do not worry about exact points except for any intercept(s).
5.2) (12 points) Without using a calculator, find the following values: $\log _{5}(125), \log (0.001), \ln \left(\mathrm{e}^{5}\right)$ and $\mathrm{e}^{\ln (9)}$. State how you found each answer.
5.3) (12 points) Simplify TWO of the following.
A) $\ln \left(\frac{X^{2} Y}{3 Z}\right)$
B) $\log _{4}(32)$ remember to show work so I know you know how to do it without a calculator.
C) $\log \left(\frac{100 X^{4}}{Y^{2}}\right)$
5.4) (10 points) Answer EITHER Part A OR Part B.
A) Suppose the population of a town is given by $\mathrm{P}=\mathrm{Ae}^{0.01 t}$. If time $\mathrm{t}=0$ is 2010, and the population in 2010 was 120 , then at what date will the population be 240 ?
B) Solve $\log _{3}(X+3)=27$ for X. Solve $3 * \log _{2}(X)=8$ for X.
5.5) (8 points) For EITHER the Gaussian model a.k.a. the normal curve ($y=a e^{-(x-b)^{2} / c}$) OR the logistic growth model, a.k.a. sigmoidal curve $\left(y=a /\left(1+b e^{-r x}\right)\right)$ draw a generic version.

