This review sheet is intended to cover everything that could be on the exam; however, it is possible that I will have accidentally left something off. You are still responsible for everything in the chapters covered except anything that I explicitly say you are not responsible for. Therefore, if I left something off of this sheet, it can still be on the exam. There will be no multiple-choice questions. Most of the questions will be like the ones in the homework assignments, and possibly a few definition questions, but I am more likely to ask questions that make you use the definitions rather than recite them. I will probably ask one of the questions from the book at the end of the chapters.

The review session will be at a time to be determined, probably Thursday, 2/14 in the normal room.
Chapter 1: What are exogenous variables, endogenous variables, parameters, relationships, equilibrium, statics, and dynamics?

Chapter 2.1: Understand was sets, subsets, and elements are. Understand set notation and the symbols $\in, \subset, \supset, \subseteq, \supseteq$, $\notin, \nrightarrow, \nsubseteq \not \pm$, and \notin. Know what \Leftrightarrow means. Be able to draw and interpret Venn diagrams. What is the symbol for the empty set, a.k.a. null set? Know how to find the sets for \cap and \cup. What are disjoint sets? What is the symbol for the complement set? Be able to find the relative difference of two sets. Be able to recognize a partition of a set.

Chapter 2.2: Now what the following sets are: $\mathbf{Z}, \mathbf{Z}_{+}, \mathbf{Q}, \Re, \Re_{+}$, and \Re_{++}. Know the following properties of real numbers: closure, commutative laws for + and $*$, associate laws for + and $*$, distributive law, the properties of zero and one, negation, reciprocals, completeness, transitivity, reflexivity, and equality. Knowing the dimensions (units) of economic variables will help you to write equations which make economic sense.

Chapter 2.3: Know how to plot an ordered pair on the coordinate system (Cartesian Plain). Know how to do a Cartesian product like $\{1,2,3\} \otimes\{4,5,6,7\}$. Be able to intervals on a number line like, $[1,4),(-\infty, 7]$, etc. Know the difference between an open interval, closed interval, and half-open interval. What do bounded and compact mean? Know how to tell if a set is convex. (A line connecting two points is entirely in the set.) Memorize the Euclidian distance formula (which is easier than it looks.) Know what an $\boldsymbol{\varepsilon}$-neighborhood is. Note that the definitions of a boundary point, interior point, and convex set easier than they look.

Chapter 2.4: Know what function, domain, range, image, and value are. Be able to tell if the function is one-toone, onto, and/or one-to-one correspondence. (The former is the vertical line test, while the middle one is the horizontal line test, and the latter is both tests.) When is a function invertable? Know what a composite mapping is. Know what is meant by slope coefficient and intercept term in a linear function. An implicit function is basically $f(x, y)=0$. (y is a function of x, but it is not explicitly written out.) Know that quadratic functions have a maximum or minimum at $x=-b / 2 a$ where $y=a x^{2}+b x+c$. Rectangular hyperbolas are of the form $x y=\alpha$.. Know how to plot power functions $\left(y=a x^{b}\right)$ and exponential functions $\left(y=a * b^{x}\right)$. Know what logarithmic functions are including the natural log. Note that for all bases (including e so it applies to the natural $\log \ln)$ that $\log _{\mathrm{b}}\left(\mathrm{x}^{*} \mathrm{y}\right)=$ $\log _{b}(x)+\log _{b}(y)$ which means $\log _{b}\left(x^{a}\right)=a * \log _{b}(x)$ and $\log _{b}(x / y)=\log _{b}(x)-\log _{b}(y)$. The definitions of concave and convex are fairly simple (concave looks like a cave so all points on the secant are below the line.). Putting strictly in front of them means the equality does not hold. For quasi-concave, the better set of the isobar is convex. For quasi-convex, the worse set of the isobar is convex. Note that the Cobb-Douglas function $f(x, y)=x^{a} y^{b}$ normally uses the assumption that $\mathrm{a}+\mathrm{b}<1$.

Chapter 3.1-3.2: A sequence is a succession of numbers of the form $f(1), f(2), f(3), \ldots$ like $f(n)=n^{2}$ where $n \in Z_{+}$or $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots$. Know how to tell if it has a limit. (For a $\mathrm{n}>\mathrm{N},\left|\mathrm{a}_{\mathrm{n}}-\mathrm{L}\right|<\varepsilon$ for an arbitrarily small ε.) If there is no limit, it is divergent. Definitely divergent if the limit is ∞ or $-\infty$. It is bounded if there is a range the values do not exceed for large n. ($\left|a_{n}\right|<K$).

Chapter 3.3: Understand why $\mathrm{PV}=\mathrm{FV}_{\mathrm{t}} /(1+\mathrm{r} / \mathrm{n})^{\mathrm{nt}}$ for discrete compounding and $\mathrm{FV}_{\mathrm{t}}=\mathrm{PV} * \mathrm{e}^{\mathrm{rt}}$ or $\mathrm{PV}=\mathrm{FV}_{\mathrm{t}} \mathrm{e}^{-\mathrm{rt}}$ for continuous compounding. There will be more of this in Chapter 3.5.

Chapter 3.4: The limits of sequences have nine properties which are very intuitive on Pages 79 and 81.
Monotonically increasing and monotonically decreasing are exactly what you would expect. It is bounded if there is both an upper bound and a lower bound.

Chapter 3.5: A series is a special type of sequence which is a summation. The standard notation is s_{n} where a sequence is a_{n}. If the $s_{n}=\sum a_{t}$ and $\lim _{n-\infty}\left|a_{n+a} / a_{n}\right|=L$, then if $L<1$ the series converges, if $L>1$, the series diverges, and
if $\mathrm{L}=1$, either could occur. (Check out $\mathrm{a}_{\mathrm{n}}=0, \mathrm{a}_{\mathrm{n}}=1$, and $\mathrm{a}_{\mathrm{n}}=(-1)^{\mathrm{n}}$. What are s_{n} and $\left|\mathrm{a}_{\mathrm{n}+1} / \mathrm{a}_{\mathrm{n}}\right|$?) The geometric series is $s_{n}=\sum a \rho^{t}$ converges if $|\rho|<1$ and $\lim _{n-\infty} s_{n}=a /(1-\rho)$. This can be used to prove that $P V=F V / r$ and $P V$ of an payment yearly for n years is $P V=F V_{t}\left(\frac{1-\left(\frac{1}{1+r}\right)^{n}}{1-\frac{1}{1+r}}\right)$.

The internal rate of return is the value of r which makes the equation equal.
Chapter 5.1-5.2: Know what marginal analysis means. What is a tangent line and how does that relate to the slope of the line? Note that the limit of the slope of the secant line as Δx approaches zero is the slope of the tangent line. Know the definitions of derivative and total differential. Note that marginal cost is the derivative of total cost function.

1) Suppose there is a geometric series $s_{n}=\sum \mathrm{a} \rho^{\mathrm{t}}$. Assuming $|\rho|<1$ then what is the limit of s_{n} as $\mathrm{n} \rightarrow \infty$? Use that to prove that $\mathrm{s}_{\mathrm{n}}=a \frac{1-\rho^{n}}{1-\rho}$
2) Which of the two equations in Question \#1 (s_{n} as $n \rightarrow \infty$ or just $\left.s_{n}\right)$ is appropriate for the present value of a bond? Explain your logic.
3) Find the limits of the following sequences showing all work and briefly explaining your answers:
$F(n)=\frac{3+\frac{4}{n+3}}{1+\frac{6}{n^{2}+5}}$.
$G(n)=\frac{4+\frac{1}{n}}{6+2 n}$
4) The series for the present value of stock dividends is $P V=\sum_{t=1}^{\infty} \frac{F V_{t}}{(1+r)^{t}}$ Find the ratio of $\mathrm{a}_{\mathrm{n}+1} / \mathrm{a}_{\mathrm{n}}$. Prove that the series converges. What does it converge to? Show all work and briefly explain what you did.
